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PREFACE 

 

INTRODUCTION 

 

The progress of technology confronts the engineer with a wide variety of 

problems connected with the design, manufacture and operation of various machines, 

motors and structures. Despite the diversity of problems that arise, their solution at 

least in part, is based on certain general principles common to all of them, namely, 

the laws governing the motion and equilibrium of material bodies. 

The science, which treats of the general laws of motion and equilibrium of 

material bodies, is called theoretical, or general, mechanics. Theoretical mechanics 

constitutes one of the scientific bedrocks of modern engineering. 

By motion in mechanics we mean mechanical motion, i.e., any change in the 

relative positions of material bodies in space which occurs in the course of time. 

According to the nature of the problems treated, mechanics is divided into 

statics, kinematics, and dynamics. Statics studies the forces and the conditions of 

equilibrium of material bodies subjected to the action of forces. Kinematics deals 

with the general properties of the motion of bodies. Dynamics studies the laws of 

motion of material bodies under the action of forces. 

According to the nature of the objects under study, theoretical mechanics is 

subdivided into: mechanics of a particle, i. e., of a body whose dimensions can be 

neglected in studying its motion or equilibrium, and systems of particles; mechanics 

of a rigid body, i. e., a body whose deformation can be neglected; mechanics of 

bodies of variable mass; mechanics of deformable bodies; mechanics of liquids; 

mechanics of gases. 

 

1. STATICS 

 

1.1. BASIC CONCEPTS AND PRINCIPLES OF STATICS 

 

1.1.1. The Subject of Statics 

 

Statics is the branch of mechanics which studies the laws of composition of forces 

and the conditions of equilibrium of material bodies under the action of forces. 

Equilibrium is the state of rest of a body relative to other material bodies. 

General mechanics deals essentially with equilibrium of solids. 

All solid bodies change the shape to a certain extent when subjected to 

external forces. This is known as deformation. In order to ensure the necessary 

strength of engineering structures and elements, the material and dimensions of 

various parts are chosen in such a way that the deformation under specified loads 

would remain tolerably small. 

This makes it possible, in studying the general conditions of equilibrium, to 

treat solid bodies as undeformable or absolutely rigid, ignoring the small 

deformations that actually occur. A perfectly rigid body is said to be one in which the 



distance between any pair of particles is always constant. In solving problems of 

statics bodies are considered as perfectly rigid. 

For a rigid body to be in equilibrium when subjected to the action of a system 

of forces, the system must satisfy certain conditions of equilibrium. The 

determination of these conditions is one of the principal problems of statics. In order 

to find out the equilibrium conditions and to solve other problems one must know the 

principles of the composition of forces, the principles of replacing one force system 

by another and, particularly, the reduction of a given force system to as simple a form 

as possible. Accordingly, statics of rigid bodies treats of two basic problems: 

1) the composition of forces and reduction of force system to as simple a 

form as possible, and 

2) the determination of the conditions for the equilibrium of force system 

acting on rigid bodies. 

 

1.1.2. Force 

 

The state of equilibrium or motion of a given body depends on its mechanical 

interaction with other bodies. The quantitative measure of the mechanical interaction 

of material bodies is called force. Force is a vector quantity. Its action on a body is 

characterized by its magnitude, direction, and point of application. 

We shall call any set of forces acting on rigid body a force system. We shall 

also use the following definitions: 

A body not connected with other bodies and which from any given position 

can be displaced in any direction in space is called a free body. 

If a force system acting on a free rigid body can be replaced by another force 

system without disturbing the body's initial condition of rest or motion, the two 

systems are said to be equivalent. 

If a free rigid body can remain at rest under the action of a force system, that 

system is said to be balanced or equivalent to zero. 

A resultant is a single force capable of replacing the action of a system of 

forces on rigid body. A force equal in magnitude, collinear with, and opposite in 

direction to the resultant is called an equilibrant force. 

Forces acting on a rigid body can be divided into two groups: the external and 

internal forces. External forces represent the action of other material bodies on the 

particles of a given body. Internal forces are those with which the particles of a given 

body act on each other. 

A force applied to one point of a body is called a concentrated force. Forces 

acting on all the points of a given volume or given area of a body are called 

distributed force. A concentrated force is a purely notional concept, insofar as it is 

actually impossible to apply a force to a single point of a body. 

 

1.1.3. Axioms of Statics 
 

There are some fundamental principles in statics which are called axioms. 

Some of these principles are corollaries of the fundamental laws of dynamics. 



Axiom 1. A free rigid body subjected to the action of two forces can be in 

equilibrium if, and only, if the two forces are equal in magnitude, collinear, and 

opposite in direction. 

Since we know that a free body subjected to the action of a single force 

cannot be in equilibrium, the first axiom defines the simplest balanced force system. 

Axiom 2. The action of given force system on a rigid body remains unchanged 

if another balanced force system is added to, or subtracted from, the original system. 

It follows that two force systems differing from each other by a balanced 

system are equivalent. 

Corollary. The point of application of a force, acting on a rigid body, can be 

transferred to any other point on the line of action of the force without altering its 

effect. 

Consider a rigid body with a force   applied at 

a point   (Fig.1.1.1). In accordance with the Axiom 2 

we can apply to the arbitrary point   on the line of 

action of the force   a balanced system   ,   such 

that      and      .  From the axiom 1 it 

follows that forces    and    also form a balanced 

system and cancel each other.  

Thus, we have only force   , equal to   in 

magnitude and direction, with the point of application shifted to point B. 

It should be noted that this corollary holds good only for forces acting on 

perfectly rigid bodies. 

Axiom 3. Two forces applied at one point of a body have as the resultant a 

force applied at the same point and represented by the diagonal of a parallelogram 

constructed with the two given forces as its sides (Fig.1.1.2). 

It is well known that vector   is called the geometrical sum of the vectors    

and   : 

       . 

Hence, the axiom 3 can also be formulated as follows: 

the resultant of two forces applied at one 

point of a body is the geometrical sum of 

those forces and is applied at that point. 

It is very important to discriminate between 

concepts of a sum of forces and their 

resultant. 

Axiom 4. To any action of one 

material body on another there is always an 

equal and oppositely directed reaction. 

This axiom represents the third law 

of the dynamics. The law of action and 

reaction is one of the fundamental principles of mechanics. 

It follows from it that when a body   acts  

Fig.1.1.1 

Fig.1.1.2 



 

Fig.1.1.3 

on a body   with a force  , body   simultaneously 

acts on body    with a force      equal in magnitude, 

collinear with, and opposite in sense to force 

 (     ) (Fig.1.1.3). 

Axiom 5. If a freely deformable body 

subjected to the action of forces is in equilibrium, the 

state of equilibrium will not be disturbed if the body 

 

solidifies (becomes rigid). 

This axiom which is called principle of solidification can also be formulated 

as follows: if a deformable body is in equilibrium, the forces acting on it satisfy the 

conditions for the equilibrium of rigid body. 

The axiom of solidification is widely employed in engineering problems. It 

makes it possible to determine equilibrium conditions by treating a deformable body 

or structure as a rigid one and to apply to it the methods of rigid - body statics. 

 

1.1.4. Constraints and Their Reactions 

 

A body whose displacement in space is restricted by other bodies either 

connected to or in contact with it is called a constrained body. We shall call a 

constraint anything that restricts the displacement of a given body in space. 

A body acted upon by a force or forces whose displacement is restricted by a 

constraint acts on that constraint with a force which is called the load or pressure 

acting on that constraint. At the same time, according to the axiom 4, the constraint 

reacts with a force of the same magnitude and opposite sense. The force, with which 

a constraint acts on a body thereby restricting its displacement, is called the force of 

reaction of the constraint, or simply the reaction of the constraint. 

All forces which are not the reactions of constraints are called applied or 

active forces. The magnitude and direction of active forces do not depend on the 

other forces acting on a given body. The difference between a force of constraint and 

an active force is that the magnitude of the former always depends on the active 

forces and is not therefore immediately apparent. 

The reactions of constraints are determined by solving corresponding 

problems of statics. The reaction of a constraint points away from the direction in 

which the given constraint prevents a body’s displacement. 

The correct determination of the direction of reactions is of great importance 

in solving problems. Let us therefore consider the direction of reactions of some 

common types of constraints. 

1. Smooth surface or support. A smooth surface is one whose friction can be 

neglected in the first approximation. Such a surface prevents the displacement of a 

body perpendicular (normal) to both contacting surfaces at their point of contact  



 

Therefore, the action of a smooth surface or support is directed normal to both 

contacting surfaces at their point of contact and is applied at that point (Fig.1.1.4.). 

If one of the contacting surfaces is a point then the reaction is directed normal 

to the other surface (fig.1.1.4b). 

2. String. A constraint provided by a flexible inextensible string (Fig.1.1.5.) 

prevents a body   from receding from the point of suspension of the string in the 

direction   . The reaction   of the string is thus directed along the string towards 

the point of suspension. 

3.Cylindrical Pin (Bearing). When two bodies are joined by means of a pin 

passing through holes in them, the connection is called a pin joint or hinge. Body 

 
   in Fig.1.6a is hinged to support D and can rotate freely in the plane of the figure 

about the axis of the joint. At the same time, point   cannot be displaced in any 

direction perpendicular to the axis. Thus, the 

reaction   of a pin can have any direction in 

the plane perpendicular to the axis of the joint 

(Fig.1.1.6a). 

It is very important to discriminate 

between bearings and moved cylindrical pin 

(roller support). The main difference is that in 

moved cylindrical pin its axis can move along 

fixed plane. Thus, its reaction is normal to 

this fixed plane (Fig.1.1.6b). 

4. Ball - and - Socket joint, step 

bearing. This type of the constraint prevents 

Fig.1.1.6 

Fig.1.1.7 

Fig.1.1.4 Fig.1.1.5 



displacements in any direction (Fig.1.1.7). Examples of such a constraint are a ball - 

pivot (Fig.1.1.7a) and a step bearing (Fig.1.1.7b). The reaction   of a ball - and – 

socket   joint or step bearing has any direction in space. Neither magnitude of   nor 

its direction in space is immediately apparent.  

5. Rod. Let a rod of a negligible weight and secured by hinges at its ends be 

the constraint of a certain structure. Then only two forces applied at its ends act on 

the rod. If rod is in equilibrium, the forces, according to the axiom 1, must be 

collinear and directed along the axis of the rod. Consequently, a rod subjected to 

forces applied at its tips, where the weight of the rod is negligible, can be only under 

tension or under compression, i. e., reaction of a rod is directed along its axis. 

Finally, let's consider the axiom of constraints which permits to reduce the 

problems of equilibrium of constrained bodies to study of free ones:  

any constrained body can be treated as a free body relieved from its constraints, 

provided the latter are represented by their reactions. 

 

1.2. CONCURRENT FORCE SYSTEM 

 

1.2.1. Composition of Forces. Resultant of Concurrent Forces 

 

We shall commence our study of statics with the geometric method of 

composition of forces. As forces are vector quantities their addition and resolution are 

based on the laws of vector algebra. The quantity which is the geometric sum of all 

the forces of a given system is called the principal vector of the system. The concept 

of the geometric sum of forces should not be confused with that of resultant. As we 

shall see later on, many force systems have no resultant at all. 

The geometric sum   of two concurrent forces    and     is determined 

either by the parallelogram rule or by constructing a force triangle. 

 

The magnitude of   is the side      of the triangle       , i.e., 

where    is the angle between the two forces. 

The angles   and   which the resultant   makes with the component forces 

can be determined by the laws of sins: 

 
  

    
 

  

    
 

 

    
. 

Fig.1.2.1
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The geometrical sum of three non - coplanar forces is represented by the 

diagonal of a parallelepiped with the given forces for its edge (Fig.1.2.2). This rule 

can be verified by successively applying the parallelogram rule. 

The geometrical sum of any forces can be determined by constructing a force 

polygon (Fig.1.2.3). The magnitude and direction of   do not depend on the order in 

which the vectors are laid off. The figure constructed in Fig.1.2.3b is called a force 

polygon or vector polygon. Thus, the geometrical sum, or principal vector, of a set of 

forces is represented by a closing side of a force polygon constructed with the given 

forces as its sides. 

Forces whose lines of action intersect at one point are called concurrent. 

Consecutively applying the parallelogram rule, we come to the conclusion that the 

resultant of a system of concurrent forces is equal to the principal vector of those 

forces and that it is applied at the point of intersection of these forces. 

To resolve a force into two or more components means to replace it by a force 

system whose resultant is the original force. Resolution of forces like their addition is 

based on the rules of vector algebra. 

 

1.2.2. Projection of a Force on an Axis and on a Plane 

 

 

 

 

 

 

 

 

 

Analytical methods of solving problems of statics are based on the concept of 

the projection of a force on an axis. The projection of a force on an axis is an 

algebraic quantity equal to the length of the line segment comprised between the 

projections of the initial and terminal points of the force taken with the appropriate 

sign. We shall take "plus" if the direction from the initial to the terminal point is the 

positive direction of the axis, and "minus" if it is the negative direction of the axis 

Fig.1.2.3. Fig.1.2.2. 

Fig.1.2.4. 



(Fig.1.2.4). It follows from this definition that the projections of a given force on any 

parallel axes of same sense are equal. We shall denote the projection of a force    on 

an axis    by the symbol    . 

It is apparent from the Fig.1.2.4 that 

                               (1.2.1) 

Hence, the projection of a force on an axis is equal to the product of the 

magnitude of the force and the cosine of the angle between the direction of the force 

and the positive direction of the axis. It follows from formula (1.2.1) that  

     if                       if        and      if      . 

The projection of a force on a plane is a vector comprised between the 

projections of the initial and terminal points of the 

force on the plane (Fig. 1.2.5). 

Thus, unlike the projection of a force on an 

axis the projection of a force on a plane is vector 

quantity. The magnitude of the projection is     

       where   is the angle between the direction 

of force   and its projection     . It also follows 

from Fig. 1.2.5 that 

                      

                         . 

 

 

1.2.3. Analytical Method of Defining and Composition of Forces  
 

Let's select a system of coordinate axes     as a frame of reference for 

defining the direction of a force in space (Fig.1.2.6). For the solution of problems of 

statics it is convenient to define a force by its projections, i.e. any force   is 

completely defined if its projections   ,     and    on the axes of a coordinate system 

are known. From formula (1.2.1) we have 

         ,         ,          . 

We can obtain from these equations  

  
    

    
    , since                    , 

whence,   

  
 +  

 +  
     ,            ,           ,            . (1.2.2) 

Eqs. (1.2.2) define the magnitude of a force and the angles it makes with the 

coordinate axes in terms of its projections on the given axes, i.e., they define the 

force. 

If a set of given forces is coplanar, each force can be defined by its 

projections on two coordinate axes. 

Operations with vectors can be expressed in terms of operations with their 

projections by the following theorem: the projection of the vector of a sum on an axis 

is equal to the algebraic sum of the projections of the component vectors on the same 

axis. 

Fig.1.2.5 



From this theorem we obtain that for any force system    ,       whose 

principal  vector is    ∑    , we have  

   ∑         ∑         ∑      (1.2.3)  

Knowing   ,      and   , from 

formulas (1.2.3) we obtain   

  √  
    

    
 ,   (1.2.4) 

     
  

 ⁄ ,       
  

 
⁄  ,       

     
  

 ⁄ .   

 

Eqs. (1.2.3) and (1.2.4) provide an 

analytical solution of the composition of forces. 
 

 

 

 

 

1.2.4. Conditions for the Equilibrium of a Concurrent Force System 

 

It follows from the laws of mechanics that a rigid body under the action of set 

of mutually balanced forces can either be at rest or in motion. We call this kind of 

motion "inertial motion". From this we can obtain two conclusions: a) forces acting 

on bodies at rest and on bodies in "inertial" motion equally satisfy the conditions of 

equilibrium; b) the equilibrium of forces acting on a free rigid body is a necessary but 

insufficient condition for the equilibrium of the body. The body will remain in 

equilibrium only if it was at rest before the moment when the balanced forces were 

applied. 

For a system of concurrent forces to be in equilibrium it is necessary and 

sufficient for the resultant of the forces to be zero. 

The conditions of equilibrium can be expressed in either graphical or in 

analytical form. 

1) Graphical Condition of Equilibrium. 

Since the resultant   of a concurrent force system is defined as the closing 

side of a force polygon, it follows that   can be zero only if the polygon is closed. 

Thus, for a system of concurrent forces to be in equilibrium it is necessary 

and sufficient for the force polygon drawn with these forces to be closed. 

2) Analytical Conditions of Equilibrium. 

The resultant of a concurrent force system is determined by the formula 

(1.2.4). As the expression under the radical is a sum of positive components,   can be 

zero only if             simultaneously, i.e., taking into account Eqs. (1.2.3) if 

                    ∑             ∑            ∑           (1.2.5) 

 

Fig.1.2.6 



Thus, for a system of concurrent forces to be in equilibrium it is necessary 

and sufficient for the sums of the projections of all forces on each of the coordinate 

axes to be zero. 

There are only two equations in (1.2.5) if the 

concurrent forces form coplanar system. 

3) The Theorem of Three Forces. 

 It is often very useful the following theorem: if a 

free rigid body remains in equilibrium under the action of 

three nonparallel coplanar forces, their lines of action 

intersect at one point. 

First draw two of the forces acting on the body, 

say    (Fig.1.2.7) and    . As the theorem states, their 

lines of action intersect at some point  . Now replace 

them by their resultants. Two forces will be acting on the 

body:   and   , which is applied at some point  . 

If the body is to be in equilibrium, then, according to the axiom 1, forces   

and    must be directed along the same line, i.e., along   . Consequently, force    

also passes through  , and the theorem is proved. It should be noted that the reverse is 

not true, i.e., the theorem expresses a necessary, but not sufficient, condition for the 

equilibrium of a body acted upon by three forces. 

 

1.2.5. Illustrative Problems 

 

The solution of problems, as a rule, consists of the following steps: 

1. Choose the body whose equilibrium should be examined. For the problem 

to lend itself to solution, the given and required forces, or their equivalents, should all 

be applied to the body whose equilibrium is being examined (for instance, if the 

problem is to determine a load acting on a support, we can examine the equilibrium 

of the body experiencing the reaction of the support, which is equal in magnitude to 

the required load). 

If the given forces act on one body and the required on another, it may be 

necessary to examine the equilibrium of each body separately, or even of some 

intermediary bodies as well 

2. Isolate the body from its constraints and draw the given forces and the 

reactions of the removed constraints. Such a drawing is called a free-body diagram 

(FBD) and is drawn separately.  

3. State the conditions of equi1ibrium. The statement of these conditions 

depends on the force system acting on the free body and the method of solution 

(graphical or analytical). Special cases of stating the equilibrium conditions for 

different force systems will be examined in the respective chapters of this book. 

4. Determine the unknown quantities, verify the answer and analyze the 

results. The computations should, as a rule, be written out in general (algebraic) form. 

This provides formulas for determining the unknown quantities, which can then be 

used to analyze the results. Solution in general form also makes it possible to catch 

mistakes by checking the dimensions (the dimensions of the terms in each side of an 

Fig.1.2.7 



equation should be the same). If the problem is solved in general form, the numerical 

values should be substituted in the final equations. 

In this section, we shall discuss equilibrium problems involving concurrent 

forces. They can be solved by either the graphical or the analytical method. 

The graphical method is suitable when the total number of given and required 

forces acting on a body is three. If the body is in equilibrium the force triangle must 

be closed (the construction should start with the known force). By solving the triangle 

trigonometrically, we obtain the unknown quantities. 

The analytical method can be applied for any number of forces. Before 

writing the conditions of equilibrium the coordinate axes must be chosen. The choice 

is arbitrary, but the equations can be simplified by taking one of the axes 

perpendicular to an unknown force. 

The method of resolution of forces is useful in determining the pressure on 

constraints induced by applied forces. Loads acting on rigid constraints are 

determined by resolving the given forces along the directions of the reactions of the 

constraints as, according to the 4th principle, force acting on a constraint and its 

reaction have the same line of action. It follows, then, that this method can be applied 

only if the directions of the reactions of the respective constraints are immediately 

apparent. 

Problem 1. Members    and    of the bracket in Fig.1.2.8a are joined 

together and attached to the wall with pins. 

Neglecting the weight of the members, 

determine the thrust in    if the suspended 

load weighs           , and         
Solution. Force   acts on both 

members, and the reactions are directed along 

them. The unknown thrust is determined by 

applying force   at point   and resolving it along    and   . Component    is the 

required force. From triangle     we obtain: 

   
 

    
  

From the same triangle we find that member    is under a tension of     
       

The larger the angle  , the greater the load on both members, which increases 

rapidly as approaches 90°. For example, at          and                  

and          . Thus, to lessen the load angle   should be made smaller. 

We see from these results that a small applied force can cause very large 

stresses in structural elements (see also Problem 2). The reason for this is that forces 

are compounded and resolved according to the parallelogram law: a diagonal of a 

parallelogram can be very, much smaller than its sides. If, therefore, in solving a 

problem you find that the loads or reactions seem too big as compared with the 

applied forces, this does not necessarily mean that your solution is wrong. 

Finally, beware of a mistake frequently made in applying the method of force 

resolution. In Problem 1 we have to determine the force of thrust acting on member 



  . If we were to apply force   at   (Fig.1.2.8b) and resolve it into a component    
along    and a component    perpendicular to it, we should obtain 

        ,         . 

Although force   was resolved according to the rule, component    is not the 

required force acting on    because not all of force    acts on   . Actually force    

acts on both members and, consequently, it increases the load acting on    and adds 

to   . 

This example shows that if a force is not resolved along the reactions of the 

respective constraints the required result cannot be obtained. 

Problem 2. A lamp of weight        (Fig.1.2.9) hangs from two cables 

   and    forming equal angles      with the 

horizontal. Determine the tensions in the cables. 

Solution. Resolve force   applied at   into 

components directed along the cables. The force 

parallelogram in this case is rhombus whose diagonals are 

mutually perpendicular and bisecting. From triangle     

we obtain 
 

 
       , 

whence       
 

     
         

The equation shows that the smaller the angle   the greater the tension in the 

cables (for instance, at  =1°,         ). Should we attempt to stretch the cable 

absolutely horizontally it would break, for, at          
Problem 3. Neglecting the weight of rod    and crank    of the 

reciprocating gear in Fig.1.2.10, determine 

the circumferential force at   and the load 

on axle   of the crank caused by the action 

of force   applied to piston   if the known 

angles are   and  . 

Solution. In order to determine the 

required forces we have to know the force   

with which the connecting rod    acts on 

pin  . The magnitude of   can be found by resolving force   along    and 

perpendicular to   . Thus we obtain:   
 

    
  

Transferring force   to point   and resolving it as shown in Fig.1.2.10 into the 

circumferential force   and the load   on the axle, we obtain: 

                 
Angle   is an external angle of triangle OBA and equals      Hence, we 

finally obtain: 

   
   (   )

    
    

   (   )

    
  

As          and      , force   is always greater than zero, i.e., it is 

always directed as shown in the Fig.1.2.10. Force  , however, is directed from   to 



 only as long as        ; at        ,   reverses its sense. At         
     

Problem 4. A load of weight   lies on a plane inclined at   degrees to the 

horizontal (Fig.1.2.11a). Determine the magnitude of the force   parallel to plane 

which should be applied to the load to keep it in equilibrium, and pressure   exerted 

by the load on the plane. 

Solution. The required forces act on different bodies:   on the load and   on 

the plane. To solve the problem we shall determine 

instead of   the reaction   of the plane, which is 

equal to   in magnitude and opposite in sense. In this 

case the given force   and the required forces   and 

  all act on the load, i.e., on one body. Consider the 

equilibrium of the load as a free body (Fig.1.2.11b), 

with the applied forces   and   and reaction   of the constraint (the plane). The 

required forces can be determined by employing either the graphical or the analytical 

method. 

Graphical method. If the body is in equilibrium, the force triangle with    ,  

and   as its sides must be closed. Start the construction with the given force: from an 

arbitrary point a lay off to scale force   (Fig.1.2.11c).Through its initial and terminal 

points draw straight lines parallel to the directions of the forces   and  . The 

intersection of the lines gives us the third vertex c of the closed force triangle    , 

whose sides    and    denote the required forces in the chosen scale. The direction of 

the forces is determined by the arrow rule: as the resultant is zero, no two arrowheads 

can meet in any vertex of the triangle. 

The magnitude of the required forces can also be computed (in which case the 

diagram need not be drawn to scale). Observing that angle        we have  

               . 

Analytical method. Since the force system is coplanar, only two coordinate 

axes are needed. To simplify the computation, take axis    perpendicular to the 

unknown force     

From equilibrium equations, we obtain: 

                    

which give: 

       ,           
The force exerted by the load on the plane is equal in magnitude to the 

calculated force and opposite in sense. 

It will be noted that the force   needed to hold the load on the inclined plane 

is less than its weight  . Thus, an inclined plane represents a simple machine, which 

makes it possible to balance a large force with a smaller one. 

A general conclusion can be drawn from the solution of the above problem: in 

problems of statics solved by the equations of equilibrium, the forces exerted by a 

body on its constraints should be replaced by the reactions of the constraints acting 

on the body, which are equal in magnitude and opposite in sense to the applied 



forces. In solving problems by the method of force resolution the forces exerted by 

the constraints are determined directly. 

Problem 5. The rod    in Fig.1.2.12a is hinged to a fixed support at    
Attached to the rod at   is a load   
      and a string passing over a pulley at 

  with a load         tied to the other 

end of the string. The axes of the pulley   

and the pin   lie on the same vertical and 

     . Neglecting the weight of the rod 

and the diameter of the pulley, determine 

the angle   at which the system will be in equilibrium and the stress in the rod   . 

Solution. Consider the conditions for the equilibrium of rod   , to which all 

the given and required forces are applied. Removing the constraints and treating the 

rod as a free body (Fig.1.2.12b), draw the forces acting on it: the weight of the load 

 , the tension   in the string, and the reaction    of the hinge, which is directed 

along   , since in the present case the rod can only be in tension or in compression. 

If the friction of the rope on the pulley is neglected, the tension in the string can be 

regarded as uniform throughout its length, whence    . 

For the graphical method of solution, construct a closed force triangle     

with forces         as its sides (Fig.1.2.12c) starting with force  . As triangles     

and    are similar, we have       and       . Hence, as           ,  

     and     
 

 
 

 

  
. 

It follows from these results that at       equilibrium is possible only if 

    Q and that the rod will be compressed with a force equal to   at any values of 

  and  . 

Note that force   (the weight of the load) was not directly included in the 

equilibrium condition (in the force triangle), as it is applied to the load and not to the 

rod whose equilibrium was considered. 

Problem 6. A crane held in position by a journal bearing   and a thrust 

bearing   carries a load   (Fig.1.2.13). Neglecting the 

weight of the structure determine the reactions    and 

   of the constraint if the jib is of length   and     . 

Solution. Consider the equilibrium of the crane 

as a whole under the action of the given and required 

forces. Mentally remove the constraints and draw the 

given force   and the reaction    of the journal bearing 

perpendicular to   . The reaction    of the thrust bearing can have any direction in 

the plane of the diagram. But the crane is in equilibrium under the action of three 

forces and consequently their lines of action must intersect in one point. This point is 

 , where the lines of action of   and    cross. Hence, the reaction    is directed 

along   . 



To solve the problem by the graphical method draw a close triangle     with 

forces  ,       as its sides starting with the given force  . From the similarity of 

triangles     and     we obtain:  

  

 
 

 

 
 

  

 
 

√     

 
  

whence 

   
 

 
      √  

  

  
   

From triangle     we see that the directions of the reactions    and     

where draw correctly. The loads acting on the journal bearing   and the thrust 

bearing   are respectively equal in magnitude to    and     but opposite in sense. 

The greater the ratio   ⁄  the greater the load acting on the constraints. 

This problem is an example of the application of the theorem of three forces. 

Note the following conclusion arising from it: if the statement of a problem gives the 

linear dimensions of structural elements, it is more convenient to solve the force 

triangle by the rule of similarity; if the angles are given, the formulas of trigonometry 

should be used. 

Problem 7. A horizontal force   is applied to hinge   of the toggle-press in 

Fig.1.2.14a. Neglecting the weight of the rods and piston, 

determine the force exerted by the piston on body   when 

the given angles are are   and  . 

Solution. First consider the equilibrium of the hinge 

  to which the given force   is applied. Regarding the 

hinge as a free body, we find that also acting on it are the 

reactions    and    of the rods directed along them. 

Construct a force triangle (Fig. 1.2.14b). Its angles are 

                     . By the law of 

sines we have: 
  

    
 

 

    
     

     

   (   )
  

Now consider the equilibrium of the piston, regarding it as a free body. 

Acting on it are three forces:   
  exerted by rod   , the reaction   of the wall, and 

the reaction   of the pressed body. The three forces are in equilibrium, consequently 

they are concurrent. Constructing a triangle with the forces as its sides, (Fig. 1.2.14c), 

we find: 

         . 

Substituting for   
  its equivalent   , we finally obtain: 

  
         

   (   )
 

 

         
   

The force with which the piston compresses the body   is equal to   in 

magnitude and opposite in sense. 



From the last formula we see that with a constant applied force   the presume 

  increases as the angles   and   diminish. 

If the rods    and    are of equal length, then  =  and             
The following conclusion can be drawn from this solution: in some problems 

the given force or forces are applied to one body and the required force or forces act 

on another; in such cases the equilibrium of the first body is considered and the force 

with which it acts on the other body is found; then the second body is examined and 

the required quantities are obtained. 

Problem 8. Rods    and    of the bracket in Fig.1.2.15a are joined together 

and attached to the wall by hinges. Over the 

pulley at   passes a string one end of which is 

fastened to the wall while the other supports a 

load of weight  . Neglecting the weight of the 

rods and the diameter of the pulley, determine 

the reactions of the rods if angles   and   are 

given. 

Solution. Consider the equilibrium of the pulley. Isolate it and draw the 

reactions of the constraints (Fig.1.2.15b). Acting on the pulley and the segment of the 

string passing over it are four external forces: the tension   in the right-hand part of 

the string, the tension   in the left-hand part of the string, which is equal to   in 

magnitude and the reactions    and    of the rods directed along the rods. 

Neglecting the diameter of the pulley, the forces can be treated as concurrent. As 

there are more than three forces, the analytical method of solution is more 

convenient. Draw the coordinate axes as shown in the Fig.1.2.15b and write 

equations of equilibrium, substituting for   the equal quantity  : 

                         
               =0. 

 

From the second equation, we find: 

   
      

    
   

Substituting this value of    into the first equation and transposing, we 

obtain: 

   
        (   )

    
   

It should be noted that if, in drawing the reaction of constraints, any reaction 

is pointed in the wrong direction, this will show up immediately. In analytical method 

the sign of the respective reaction will be negative. 

Problem 9. The vertical pole    in Fig.1.2.16 is anchored down by guy wires 

   and    which make equal angle       with the pole; the angle between the 

planes     and     is      . Two horizontal wires parallel to the axes    and 

   are attached to the pole, and the tension in each of them is       . Neglecting 

the weight of all the elements, determine the vertical load acting on the pole and the 

tensions in the guy wires. 



Solution. Consider the equilibrium of point   to which the guys and 

horizontal wires are attached. Acting on it are the reactions    and    of the 

horizontal wires (       ), the reactions    and    of the guys, and the reaction 

   of the pole. The force system is three-dimensional, and the analytical method of 

solution is most suitable.  

From the equilibrium equations we have: 

                 

         +              

                               
solving which we obtain: 

    (     
 

 
)          

      

    
   

 
 

        
  

The results show that at      ,    0, and the reaction    is of opposite 

sense than shown in the diagram. As a wire cannot be in compression, it follows that 

the guy    should be anchored in such a way that angle   would be greater than 45°. 

Substituting the scalar quantities in the equations, we obtain: 

                                 

 

1.3. Parallel Force System 

 

1.3.1. Moment of Force about an Axis or a Point 

 

We know that force acting on a body tends either to displace it in some 

direction or to rotate it about a point (axis). The tendency of a force to turn a body 

about a point or an axis is described by the moment of that force. 

Consider a force  applied at a point   of a rigid body (Fig.1.3.1) which tends 

to rotate the body about a point  . The perpendicular distance   from   to the line of 

action of   is called the moment arm of force   about the centre  . It is obvious that 

the rotational action of any force depends on: 

1) the magnitude of the force   and the length of its 

moment arm  ; 

2) the position of the plane     of rotation 

through the centre   and the force   and 

3) the sense of the rotation in that plane.  

For the present we shall limit ourselves to coplanar 

force systems and we needn't define the plane of rotation 

specially. Thus, we may formulate the concept of moment 

of a force as a measure of the force tendency to turn the 

body: the moment of a force about a center is the product 

of the force magnitude and the length of the moment arm taken with appropriate sign. 

Fig.1.3.1 



We shall consider a moment positive if the applied force tends to rotate the 

body counterclockwise, and negative if it tends to rotate the body clockwise. 

We shall denote the moment of a force   about a center   by the symbol 

  ( ). Thus, 

                             (F)       (1.3.1) 

It should be noted the following properties of the moment of the force: 

-the moment of a force does not change if the point of application of the force 

is transferred along its line of action; 

-the moment of a force about a center can be zero only if the force is zero or if 

its line of action passes through that center. 

-the magnitude of the moment is represented by twice the area of the triangle  

    (Fig. 1.3.1):   ( )     areas of      . 

It is easy to prove the following theorem (Varignon's theorem): the moment of 

the resultant of coplanar forces about any center is equal to the algebraic sum of the 

moments of the component forces about that center. 

 

1.3.2. Composition of Parallel Forces 

 

Let's consider two possible cases: the forces are of the same sense, and the 

forces are of opposite sense. 

Consider two parallel forces    and   . By 

applying the first and second axioms of statics we can 

replace the given system of parallel forces with an 

equivalent system of concurrent forces   , and   .   

For this, apply two balanced forces     and     
(     ) directed along    at points   and    
compound them with forces    and    according to 

the parallelogram law, transfer the resultants    and 

   to the point   where their lines of action 

intersect, and resolve them into their initial 

components. As a result we have obtained two 

balanced forces    and    applied at point    which 

can be neglected, and two forces    and    directed along the same line. Now 

transfer the latter two forces to   and replace them 

by their resultant   of magnitude        . 

Thus, force    is the resultant of the parallel forces 

   and   . To determine the position of   consider 

the triangles        , and          From the 

similarity of the respective triangles it follows that 
  

  
 

  

  
 and  

  

  
 

  

  
 .             , 

as      . From the property of proportion, and 

taking into account that          and 

       , we obtain: 

    

Fig.1.3.3 
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      (1.3.2) 

Hence, the resultant of two parallel forces of the same sense is equal to the 

sum of their magnitudes, parallel to them, and is of same sense; the line of action of 

the resultant is between the points of application of the component forces, its 

distances from the points being inversely proportional to the magnitudes of the 

forces. 

2) Composition of two forces of opposite sense. 

Consider the concrete case of       (Fig.1.3.2). Take a point   on the 

extension of      and apply two balanced forces   and    parallel to the given forces 

  , and   .    

The magnitude of   and    and the location of   are chosen so as to satisfy 

the equations: 

       ; 
  

  
 

  

  
 

  

 
   

 

Compounding forces    and   , we find that their resultant   is equal in 

magnitude to      , i.e., to force   . It also follows from Eq. (1.3.2) that this force 

is applied at point   . Forces    and   are balanced and can be discarded. As a result, 

the given forces    and    are replaced by a single force  , their resultant. Thus, the 

resultant of two parallel forces of opposite sense is equal in magnitude to the 

difference between their magnitudes, parallel to them, and has the same sense as the 

greater force; the line of action of the resultant lies on the extension of the line 

segment connecting the points of application of the component forces, its distances 

from the points being inversely proportional to the forces. 

 

1.3.3. A Force Couple. Moment of a Couple 

 

A force couple is a system of two parallel forces of same magnitude and 

opposite sense. A force system constituting a couple is not 

in equilibrium. This conclusion follows from the first 

axiom of statics. Furthermore, unlike previously examined 

systems, a couple has no resultant. For if the couple 
(    ) (Fig.1.3.4) had a resultant, there would also have 

to be a force       capable of balancing it, i.e., the 

system of forces        , would be in equilibrium. But as will 

be shown later on, for any system of forces to be in equilibrium their geometrical sum 

must be zero. In the present case this would require that           which is 

impossible since        but      Thus, a couple cannot be replaced or 

balanced by a single force. 

The plane through the lines of action of both forces of a couple is called the 

plane of action of the couple. The perpendicular distance   between the lines of 

action of the forces is called the arm of the couple (Fig.1.3.4). The action of a couple 

on a rigid body is a tendency to turn it; it depends on the magnitude of the forces of 

the couple, arm of the couple and the sense of rotation in that plane. 



A couple is characterized by its moment. In this section we discuss the 

properties of couples of coplanar forces. Thus, we can give the following definition: 

the moment of a couple is defined as a quantity equal to the product of the magnitude 

of one of the forces of the couple and the perpendicular distance between the forces, 

taken with the appropriate sign. The moment of a couple is said to be positive if the 

action of the couple tends to turn a body counterclockwise, and negative if clockwise. 

Denoting the moment of a couple by the symbol   or  , we have: 

             (1.3.3) 

It is apparent that the moment of a couple is equal to the moment of one of its 

forces about the point of application of the other force i.e.: 

    ( )    (  )  
Theorem: the algebraic sum of the moments of the forces of a couple about 

any point in its plane of action is independent of the location of that point and is 

equal to the moment of the couple. 

For, taking an arbitrary point   in the plane of a couple (Fig.1.3.5), we 

find:   ( )             (  )       
 
. Adding the two equations and noting 

that      and        , where   is the couple arm, we obtain: 

  ( )    (  )   . 

Let us now formulate two very useful theorems without proving them:  

1) A couple can be replaced by any other 

couple of the same moment lying in the same plane 

without altering the external effect. 

2) The external effect of a couple on a rigid 

body remains the same if the couple is transferred 

from a given plane into any other parallel plane. 

It follows from the first of these theorems two 

properties: 

-a couple can be transferred anywhere in its 

plane of action; 

-it is possible to change the magnitudes of the 

forces of a couple or its arm arbitrarily without changing its moments. 

 

1.3.4. Composition of Couples. Conditions for the Equilibrium of Couples 

 

Theorem: a system of coplanar couples is equivalent to a single couple lying in 

the same plane the moment of which equals the algebraic sum of the moments of the 

component couples. 

Let three couples of moments       and    be acting on a body (Fig.1.3.6). 

By the theorem of equivalent couples they can be replaced by couples (      ), 

(      ), and (      ) with a common arm   and the same moments: 

                          
Compounding the forces applied at   and   respectively, we obtain a force    

at   and a force   at   magnitudes of which are: 

               

Fig.1.3.5 



As a result the set of couples is replaced by a 

single couple (     )with a moment 

         (    )+            . 

The same results can be obtained for any 

number of couples, and a set of  couples of moments 

     …    can be replaced by a single couple 

with a moment   ∑  .  

It follows from proved theorem that for a 

coplanar system of couples to be in equilibrium it is 

necessary and sufficient for the algebraic sum of 

their moments to be zero: 

 
∑    . 

 

1.3.5. Illustrative problems 

 

Problem 1. The bracket      in Fig.1.3.7 is in equilibrium under the action of two 

parallel force   and    making a couple. Determine the load on the supports if 

          ,           ,           CD and           . 

Solution. Replace couple (    ) with an equivalent couple (    ) whose two forces 

are directed along the reactions of the constraints. 

The moments of the two couples are equal, i.e., 

 (   )   , consequently the loads on the 

constraints are: 

     
   

 
       

and are directed as shown in the diagram. 

Problem 2. A couple of moment    acts on gear 1 of radius    in Fig.1.3.8a. 

Determine the moment    of the 

couple which should be applied to gear 

2 of radius   in order to keep the 

system in equilibrium. 

Solution. Consider first the conditions 

for the equilibrium of gear 1. Acting on 

it is the couple of moment    which 

can be balanced only by the action of 

another couple, in this case the couple (     ) created by the force    exerted on 

the tooth of gear 1 by gear 2, and the reaction    of the axle  . So we have    

     or    
  

  ⁄ . 

Consider now the condition for the equilibrium of gear 2. By the fourth 

principle we know that gear 1 acts on gear 2 with a force        (Fig.1.3.8b), 

which together with the reaction of axle   makes a couple (     ) of moment –

 

Fig.1.3.6 



    . This couple must be balanced by a couple of moment    acting on gear 2. 

Thus,          . Hence, as      , 

   
  
  

    

It will be noticed that the couples of moments    and    do not satisfy the 

equilibrium condition, which could be expected, as the couples are applied to 

different bodies. 

The force    (or   ) obtained in the course of the solution is called the 

circumferential force acting on the gear. The circumferential force is thus equal to the 

moment of the acting couple divided by the radius of the gear: 

 

   
  

  
 

  

  
 

Problem. 3. The travelling crane in Fig.1.3.9 weighs      , its centre of 

gravity lies on   , it lifts a load of weight      , the length of the jib (the distance 

of the load from   ) is        , and the distance between the wheels is    
        . Determine the force with which the wheels   and   act on the rails. 

Solution. Consider the equilibrium of the crane-and-load system taken as a 

free body: the active forces are   and  , the unknown forces are the reactions    and 

   of the removed constraints. Taking   as the centre of the moments of all the 

forces and projecting the parallel forces on a vertical axis, we obtain 

           (   )                 
solving which we find: 

   
 

 
 

 

 
(
 

 
  )         

                                                  
 

 
 

 

 
(
 

 
  )         

To verify the solution, write the equation of the 

moments about  : 

          (   )     
Substituting the value of   , we find that the 

equation is satisfied. The pressures exerted by the wheels 

on the rails are respectively equal to NA and NB in 

magnitude and directed vertically down. 

From the solution we see that at 

  
 

   
         

the reaction NA is zero and the left wheel no longer pressed on the rail. If the load   

is further increased the crane will topple over. The maximum load   at which 

equilibrium is maintained is determined by the equation ∑  (  )     
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1.4. COPLANAR FORCE SYSTEM 

 

1.4.1. Reduction of a Coplanar Force System to a given Centre 

 

Theorem: Force acting on a rigid body can be moved parallel to its line of 

action to any point of the body, if we add a couple of a moment equal to the moment 

of the force about the point to which it is translated. 

Consider a force   applied to a rigid body at a point A (Fig.1.4.1a). The action 

of the force will not change if two 

balanced forces      and       
are applied at any point   of the body. 

The resulting three-force system 

consists of a force    equal to   and  

 

 

applied at  , and a couple (    )  of moment     ( )  
The result can also be denoted as in Fig.1.4.1b, with force   neglected. 

Let a set of coplanar forces   , 

  ,…   be acting on a rigid body and let     

be any point coplanar with them which 

we shall call the center of reduction. By 

the theorem just proved, we can transfer 

all the forces to   as in  

Fig. 1.4.2a. As a result we have a 

system of forces            
             and couples of moments 

     (  )      (  )      
  (  ) . 

 

The forces applied at   can be replaced with their resultant    ∑   
  , acting 

at that point O , or  

  ∑           (1.4.1) 

The quantity  , which is the geometrical sum of all the forces of the given 

system is called the principal vector of the system. 

Similarly, by the theorem of composition of couples, we can replace  

all the couples with a coplanar resultant with a moment: 

   ∑     ∑    (  )      (1.4.2) 

The quantity    which is the sum of the moments of all the forces of the 

system about centre   is called the principal moment of the force system about 

centre . 

Thus, any system of coplanar forces can be reduced to an arbitrary center in 

such a way that it is replaced by a single force equal to the principal vector of the 

system and applied at the center of reduction and a single couple of moment equal to 

the principal moment of the system about center of reduction (Fig.1.4.2c). 



Fig.1.4.3 

Fig.1.4.4 

It should be noted that   is not the resultant of the force system, as it replaces 

the system only together with a couple. 

Hence, in order to define a coplanar 

force system it is sufficient to define its 

principal vector and principal moment about any 

center of reduction. It is apparent that two force 

systems with equal principal vectors and 

principal moments are statically equivalent. 

Let us illustrate the results just obtained 

considering the reaction of fixed support (rigid  

 

 

clamp or embedding) (Fig.1.4.3). In this case the action of the constraining surfaces 

on the embedded portion of the beam is that of a system of distributed forces of 

reaction. 

By reducing the forces of reaction to a common center  , we can replace them 

with an immediately unknown force attached at   and a couple    of immediately 

unknown moment. Force   can in turn be denoted by its rectangular components    

and   . 

Thus, to determine the reactions of a rigid clamp we must find three unknown 

quantities      , and    . 

 

1.4.2. Reduction of a Coplanar Force System to the Simplest Possible 

Form 

The results obtained in 

section 1.4.1. make it possible to 

reduce a given coplanar force 

system to the simplest possible 

form. Let us consider the following 

cases: 

1) If      and      the 

system is in equilibrium. This case 

will be examined in the following 

section. 

2) If     and     , the system can be reduced to a couple of moment 

   ∑  (  ) equal to the principal moment of the system. In this case the 

magnitude of    does not depend on the location of the centre  , otherwise we would 

find that the same system could be replaced by non-equivalent couples, but this is 

impossible. 

3) If     and     . In this case the system can immediately be 

replaced by a single force, i.e., the resultant   which passes through centre  . 



4) If     and      (Fig.1.4.4a). In this case the couple of moment 

   can be represented by two forces   and     such that        and      

(Fig.1.4.4b). The arm of the couple (     ) must be   
|  |

 
⁄ . 

Discarding the mutually balanced forces   and    we find that the whole 

force system can be replaced by the resultant      passing through point C. 

These cases show that if a coplanar force system is not in equilibrium, it can 

be reduced either to a resultant (when    ) or to a couple (when    ). 

 

1.4.3. Conditions for the Equilibrium of a Coplanar Force System 

 

For any given coplanar force system to be in equilibrium it is necessary and 

sufficient for the following two conditions to be satisfied simultaneously: 

         , 

where   is any point in a given plane, as at     the magnitude of    does not 

depend on the location of  . 

These conditions are necessary, for if one of them is not satisfied the force 

system is reduced either to a resultant (when     ) or to a couple (when     ) 

and consequently is not balanced. At the same time, these conditions are sufficient, for 

at     the system can be reduced only to a couple of moment   , but     , 

hence the system is in equilibrium. 

Let us consider three different forms of the analytical conditions of 

equilibrium. 

1. The basic form of the equations. The magnitude of   and    are 

determined by the equations : 

  √  
    

 ,      ∑    (  )  

where    ∑     . and    ∑     . But   can be zero only if both      and 

    . Hence, conditions of equilibrium will be satisfied if 

∑        ∑        ∑    (  )                         (1.4.3) 

Eqs. (1.4.3) express the following analytical conditions of equilibrium: for any 

given coplanar force system to be in equilibrium it is necessary and sufficient for the 

sums of the projections of all the forces on each of the two coordinate axes and the 

sum of the moments of all the forces about any point in the plane to be separately 

zero. 

In the mechanical sense the first two equations express the necessary 

conditions for a body to have no translation parallel to the coordinate axes, and the 

third equation expresses conditions for it to have no rotation in the plane       
2. The second form of the equations. For any given coplanar force system to be 

in equilibrium it is necessary and sufficient for the sums of the moments of all the 

forces about any two points   and   , and the sum of the projections of all the forces 

on any axis OX not perpendicular to AB to be separately zero: 

∑  (  )       ∑  (  )       ∑         (1.4.4) 



Fig.1.4.5 

The necessity of these conditions is apparent, for if any one of them is not 

satisfied, then either     or      (    ) and the forces will not be in 

equilibrium. 

These conditions are sufficient, for if for a given 

force system only the first two of Eqs. (1.4.4) are 

satisfied, then      and     . By p.1.4.2, such a 

force system may not be in equilibrium as it may have a 

resultant   passing through the points   and   

(Fig.1.4.5). But from the third equation we must have 

   ∑     . As OX is not perpendicular to   , the 

latter condition can be satisfied only if the resultant   is 

zero, i.e., the system is in equilibrium. 

3. The third form of the equations. For any given 

coplanar force system to be in equilibrium it is necessary and 

sufficient for the sums of the moment of all the forces about any three non-collinear 

points to be zero: 

          ∑  (  )       ∑  (  )       ∑       (1.4.5) 
The necessity of these conditions is obvious. Their sufficiency follows from 

the consideration that if, with all the three equations satisfied, the system would not be 

in equilibrium, it could be reduced to a single resultant passing through points     

and  , which is impossible as they are not collinear. Hence, if Eqs. (1.4.5) are 

satisfied, the system is in equilibrium. 

In all the cases we have three conditions. The 

Eqs. (1.4.3) are basic because they impose no 

restrictions on the choice of the coordinate axes or the 

centers of moments. 

Finally, let us consider the particular case, i.e., 

equilibrium of a coplanar system of parallel forces. 

If all the forces acting on a body are parallel 

(Fig.1.4.6), we can take axis   of a coordinate system 

perpendicular to them and axis   parallel to them. Then 

the   projections of all the forces will be zero, and the 

first one of Eqs. (1.4.3) becomes an identity 0 ≡ 0. 

Hence, for parallel forces we have two equations of equilibrium: 

∑         ∑  (  )=0, 

where the   axis is parallel to the forces. Another form of the conditions for the 

equilibrium of parallel forces follows from Eqs. (1.4.4): 
∑    (  )    ∑    (  )      Where the points   and   should not lie 

on a straight line parallel to the given forces. 
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1.4.4. Statically Determinate and Statically Indeterminate Problems 

 

In problems where the equilibrium of constrained rigid bodies is considered, 

the reactions of the constraints are unknown quantities. Their number depends on the 

number and the type of the constraints. A problem of statics can be solved only if the 

number of unknown reactions is not greater than the number of equilibrium equations 

which they are present. Such problems are called statically determinate, and the 

corresponding systems of bodies are called statically determinate systems. 

Problems in which the number of unknown reactions of the constraints is 

greater than the number of equilibrium equations in which they are present are 

called statically indeterminate, and the corresponding systems of bodies are called 

statically indeterminate. 

The examples of statically indeterminate systems are shown in Fig.1.4.7. 

There are three unknown quantities in the problem shown in Fig.1.4.7: the 

tensions       and    of the strings, but only the two equations for the equilibrium 

of a coplanar system of concurrent forces. 

 

There are five unknown quantities in the problem shown in Fig.1.4.8: 

            and   , but only the three equations for the equilibrium of a coplanar 

force system . 

The difference between number of unknown quantities and number of 

equilibrium equations is called degree of the static indeterminateness. In the first case 

it is equal to one and in the second one it is equal to two. It can be seen that the static 

indeterminateness of a problem is a result of the presence of too many constraints. In 

the first problem two strings are sufficient to keep the weight in equilibrium; in the 

second one the embedding is sufficient to keep the beam in equilibrium. 

We shall be concerned only with statically determinate problems. Statically 

indeterminate problems are solved in the courses of strength of materials and statics 

of structures. 

 

 

Fig.1.4.7 Fig.1.4.8 
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1.4.5. Equilibrium of Systems of Bodies 

 

In many cases the static solution of engineering structures is reduced to an 

investigation of systems of connected bodies. We shall call the constraints connecting 

the parts of a given structure internal, as opposed to external constraints which 

connect a given structure with other bodies. 

If a structure remains rigid after the 

external constraints are removed, the 

problems of statics are solved for it as for a 

rigid body. However, engineering structures 

may not necessarily remain rigid when the 

external constraints are removed. An example 

of such a structure is the three-pin arch in 

Fig.1.4.9. 

If supports   and   are removed the 

arch is no longer rigid for its parts can turn about pin  . 

According to the principle of solidification, for a system of forces acting on 

such a structure to be in equilibrium it must satisfy the conditions of equilibrium for a 

rigid body. It was pointed out, though, that these conditions, while necessary, were 

not sufficient, and therefore not all the unknown quantities could be determined from 

them. In order to solve such a problem it is necessary to examine additionally the 

equilibrium of one or several parts of the given structure. 

One of the ways of solving such a problem is to divide a structure into 

separate bodies and write the equilibrium equations for each as for a free body 

(Fig.1.4.10). 

The reactions of the internal constraints 

   and    will constitute pairs of forces equal in 

magnitude and opposite in sense in accordance 

with the fourth axiom of statics. Hence we have    

six unknown reactions:         ,      ,     
At the same time we can compose six 

equations of equilibrium: three equations for the 

left-hand part of structure, and three ones for the 

right-hand part. Solving the system of six 

equations we can determine all six unknown 

quantities. 

For a structure of   bodies, each of which is subjected to the action of a 

coplanar system, we thus have    equations from which we may determine unknown 

quantities. 

Another method of solving such problems is to compose three equations of 

equilibrium for the three-pin arch as a whole, and three more for left or right-hand 

part of the arch. Then, we shall also have six equations for six unknown reactions. 

If the number of unknown quantities is greater than the number of equations, 

the problem is statically indeterminate. 



 

1.4.6. Illustrative Problems 

 

Problem. 1 One end of a uniform beam    weighing   N (Fig.1.4.11) rests at 

  against a corner formed by a smooth horizontal surface and block  , and at   on a 

smooth plane inclined   degree to the 

horizontal. The beam’s inclination to the 

horizontal is equal to  . Determine the pressure 

of the beam on its three constraints. 

Solution. Consider the equilibrium of 

the beam as a free body. Acting on it are the 

given force   applied at the middle of the beam 

and the reactions  ,   , and    of the 

constraints directed normal to the respective 

surfaces. Draw the coordinate axes as in Fig.1.4.11 and write the equilibrium 

equations, taking the moments about  , where two of the unknown forces intersect. 

First compute the projections of all the forces on the coordinate axes and their 

moments about  .  

The equilibrium equations:  

            
              

                   
From the last equation we find: 

  
     

     
  

As    is parallel to the inclined plane,         whence       and 

finally 

  
     

    (   )
  

Solving the first two equations, we obtain: 

    [  
        

    (   )
]      

        

    (   )
  

The forces exerted on the surfaces are equal in magnitude to the respective 

reactions and opposite in sense. 

The values of N1 and N2 can be verified by solving equations of moments 

about the points of intersection of R and N2 and R and N1. 

From this solution we can draw the following conclusion: If, in order to 

determine the projections or moments of any force or forces, we need to know a 

quantity (e.g., the length of a line or size of an angle) not given in the statement of the 

problem, we should denote that quantity by a symbol and include it in the equilibrium 

equations. If the introduced quantity is not cancelled out in the course of the 

computations, it should be expressed in terms of given quantities. 



Problem. 2 Acting on a symmetrical arch of weight       (Fig.1.4.12) is a 

set of forces reduced to a force       

applied at   and a couple of moment 

         . The dimensions of the arch 

are                   , and 

    °. Determine the reactions of the pin 

  and the roller  . 

Solution. Consider the equilibrium 

of the arch as a free body. Acting on it are 

the given forces   and   and a couple of 

moment   , and also the reactions of the 

supports         . In this problem it is more convenient to take the moments about 

  and   and the force projections on axis     Then each equation will contain one 

unknown force. In computing the moments of force  , resolve it into rectangular 

components    and     

Writing the equilibrium equations and taking into account that |  |  

     , and |  |       , we obtain: 

            

     
 

 
                     

      
 

 
        (   )            

Solving the equations, we find 

               

   
 

 
  

           

 
 

  

 
        

   
 

 
  

(   )           

 
 

  

 
        

The value of    is negative, which means that the sense of the x component 

of the reaction at   is opposite to that shown in the diagram, which could have been 

foreseen. The total reaction at   can be found from the geometrical sum of the 

rectangular components XB and YB, its magnitude being 

   √  
    

         

If the sense of the couple acting on the arch were opposite to that indicated in 

Fig.1.4.12, we would have           . In this case                     YB, 

while    would remain the same. 

To check the solution, write the equation for the projections on axis   : 

                 
Substituting the obtained values of    and   , we find that they satisfy the 

equation (substitution should be carried out in both the general form, to verify the 

equations, and in the numerical solution to verify the computations). 

 



Problem. 3 The beam in Fig.1.4.13a is embedded in a wall at an angle 

    ° to it. The length of the portion    is         and its weight is   
        The beam supports a cylinder of weight 

        . The distance    along the beam from 

the wall to the point of contact with the cylinder is 

       . Determine the reactions of the 

embedding. 

Solution. Consider the equilibrium of the 

beam as a free body. Acting on it are force    

applied halfway between   and  , force   applied 

perpendicular to the beam at   (but not force  , 

which is applied to the cylinder, no to the beam!), 

and the reactions of the embedding, indicated by the 

rectangular components    and    and a couple of moment   . 

To determine   we resolve force  , which is applied at the centre of the 

cylinder, into components   and   respectively perpendicular to the beam and the 

wall (Fig.1.4.13b). From the parallelogram we obtain: 

  
 

    
  

Writing the equations of equilibrium and substituting the value of  , we have: 

                              
 

    
  

 

 
        

Solving these equations we find: 

                   
               

    
 

    
  

 

 
              

The reaction of the wall consists of force    √  
    

  and a couple of 

moment MA. 

The solution of this problem once again underlines the fundamental point: the 

equilibrium equations include only the forces acting directly on the body whose 

equilibrium is being considered. 

Problem 4. A string supporting a weight          passes over two pulleys 

  and   as shown in Fig.1.4.14. The other end of the 

string is secured at  , and the frame is kept in 

equilibrium by a guy wire    . Neglecting the weight of 

the frame and friction in the pulleys, determine the 

tension in the guy wire and the reactions at  , if the 

constraint at   is a smooth pivot allowing the frame to 

turn about its axis. The dimensions are as shown in the 

diagram. 

Soluton. Consider the whole system of the frame 

and the portion      of the string as a single free rigid 

body. Acting on it are the following external forces: the 



weight   of the load, the tension   in section    of the string, and the reactions 

    , and    of the constraints. The internal forces cancel each other and are not 

shown in the diagram. As the friction of the pulleys is neglected, the tension in the 

cable is uniform throughout its whole length and    . 

Introducing angles   and  , let us compute the projections of all the forces on 

the coordinate axes and their moments about  . 

From the right-angle triangles      and     we find that           and  

        , whence              ,                and    . 

Substituting for the trigonometric functions their values and assuming    , the 

equations of equilibrium give: 

                
                   
                     

solving which, we find: 

  
  

  
               

  

  
               

  

  
          

Attention is drawn to the following conclusions: 1) in writing equations of 

equilibrium, any system of bodies which remains fixed when the constraints are 

removed can be regarded as a rigid body; 2) the internal forces acting on the parts of 

a system (in the case the tension of the string    acting on pulleys   and  ) are not 

included in the equilibrium equations as they cancel each other. 

Problem 5.The horizontal member    of the bracket in Fig.1.4.15 weighs 

        , and the inclined member    weights         . Suspended from the 

horizontal member at   is a load of weight        . 

Both members are attached to the wall and to each other 

by smooth pins (the dimensions are shown in the 

diagram). Determine the reactions at   and  . 

Solution. Considering the bracket as a whole as a 

free body, we find the acting on it are the given forces 

        and the reactions of the supports 

  ,         . But with its constraints removed the 

bracket is no longer rigid body, because the members can 

turn about pin  . On the other hand, by the principle of 

solidification, if it is in equilibrium the forces acting on it 

must satisfy the conditions of static equilibrium. We may 

therefore write the corresponding equations: 

∑             

∑                     

∑  (  )                           

 

We find that the three equations contain four unknown quantities 

  ,         . Let us therefore investigate additionally the equilibrium conditions of 



member    (Fig.1.4.15b). Acting on it are forces       and the reactions 

  ,         . If we write the required fourth equation for the moments of these 

forces about   we shall avoid introducting two more unknown quantities,    and   . 

We have 

∑  (  )                  

Solving the system of four equations (starting with the last one) we find: 

   
 

 
(    )         

   
 

 
      

 

 
        

   
 

 
   

 

 
   

 

 
        

               
Problem 6. A horizontal force   acts on the three-pin arch in Fig.1.4.16. 

Show that in determining the reactions of supports   and   force   cannot be 

transferred along its 

action line to  . 

Solution. 

Isolating the arch from 

its external supports   

and  , we obtain a 

deformable structure 

which cannot be treated as rigid. Consequently, the point of action of the force acting 

on the structure cannot be transferred along    even to determinate the conditions 

for the equilibrium of the structure. 

Let us demonstrate this by solving the problem (the weight of the arch is 

neglected). Consider first the right-hand member of the arch as a free body. Acting on 

it are only two forces, the reactions    and    of the pins   and  . To be in 

equilibrium, these two forces must be directed along the same line, i.e., along   , 

and consequently the reaction    is directed along   . 

Investigating now the equilibrium of the arch as a whole, we find that acting 

on it are three forces, the given force   and the reactions of the supports    (whose 

direction we have established) and   . From the theorem of three forces we know 

that if the system is in equilibrium the forces must be concurrent. Thus we obtain the 

direction of   . The magnitudes of    and    can be found by the triangle rule. 

If we apply force   at   and, reasoning in the same way, make the necessary 

constructions (Fig.1.4.16 b), we shall find that the reactions of the supports    and 

   are different both in magnitude and in direction. 

 

 

 

 

 

 



1.5. FRICTION 

 

1.5.1. Sliding Friction 

It is well known from experience that when two bodies tend to slide on each other, a 

resisting force appears at their surface of contact which opposes their relative motion. 

This force is called sliding friction. 

Friction is due primarily to minute irregularities on the contacting surfaces, which 

resist their relative motion, and to forces of adhesion between contacting surfaces. 

There are several general laws which reflect the principal features of friction. The 

laws of sliding friction can be formulated as follows: 

1.When two bodies tend to slide on each other, a frictional force is developed at the 

surface of contact, the magnitude of which can have any value from zero to a 

maximum value which is called limiting friction. 

2. Limiting friction is equal in magnitude to the product of the coefficient of static 

friction (or friction of rest) and the normal pressure or normal reaction: 

                                                (1.5.1) 

The coefficient of static friction f is a dimensionless quantity which is determined 

experimentally and depends on the material of the contacting bodies and the 

conditions of their surfaces. 

3. Within broad limits, the value of limiting friction does not depend on the area of 

the surface of contact. 

Taken together, the first and second laws state that for conditions of equilibrium the 

static friction        
The coefficient of friction can be determined experimentally by means of a simple 

device shown in Fig. 1.5.1. The horizontal plate    and rectangular block   are 

made of materials for which the coefficient of friction is to be determined. By 

gradually loading the pan we determine the load    at which the bloc starts moving. 

Obviously, the limiting friction      
  Hence, as in this case    , we find from 

Eq.(1.5.1) 

  
  

 
 

   

 
  

A series of such experiment 

demonstrates that, within certain limits, 

   is proportional to   and   is 

constant. The coefficient of static 

friction is also independent of the 

magnitude of the contact area, within 

certain limits. 

It should be noted that as long as the 

block remains at rest, the frictional 

force is equal to the applied force, and not to   . The force of friction becomes equal 

to    only when slipping is impending 

The foregoing refers to sliding friction of rest. When motion occurs, the frictional 

force is directed opposite to the motion and equals the product of kinetic coefficient 

D 

Q 

P 

N 

F 

Fig.1.5.1 



of friction and the normal pressure. 

 

1.5.2. Angle of Friction. Reactions of Rough Constraints 
 

Up till now we regarded the surfaces of constraints as smooth. The reaction of real 

(rough) constraints consists of two components: the normal reaction   and the 

frictional force   perpendicular to it. Consequently, the total reaction   forms an 

angle with the normal to the surface. As the friction increases from zero to     force   

changes from   to   , its angle with the normal increasing from zero to a maximum 

value    (Fig. 1.5.2a). The maximum angle      which the total reaction of a rough 

support makes with the normal to the surface is 

called the angle of static friction, or angle of 

repose. 

From Fig. 1.5.2a we obtain:      
  

 
  

Since      , we have the following relation 

between the angle of friction and the coefficient 

of friction: 

             (1.5.2) 

When a system is in equilibrium the total reaction   can pass anywhere within the 

angle of friction, depending on the applied forces. When motion impends, the angle 

between the reaction and the normal is     
If to a body lying on a rough surface is applied a force   making an angle   with the 

normal (Fig. 1.5.2b), the body will move only if the shearing force          
       (neglecting the weight of the body). But the inequality               
where       , is satisfied only if tan         i.e., if        Consequently, if 

angle   is less than    the body will remain at rest no matter how great the applied 

force. This explains the well-known phenomena of wedging and self-locking. 

 

1.5.3. Belt Friction 

 

A force   is applied at the end of a string passing over a cylindrical shaft (Fig. 1.5.3). 

Let us determine the least force   that must be applied 

at the other end of the string to maintain equilibrium at 

a given angle        
 Consider the equilibrium of an 

element    of the string of length       , where   

is the radius of the shaft. The difference     between the 

tensions in the string at   and   is balanced by the 

frictional force         
Consequently,         The value of    is 

determined from the equilibrium equation derived for 

the force components parallel to axis Oy. 

Taking into account that for very small angles,         and neglecting small 

quantities of higher order we obtain: 

Fig.1.5.
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 (    )    

  

 
   

  

 
      

Substituting this value of   , we have: 

         
Dividing both members of the equation by T and integrating the right-hand member in 

the interval from   to   and the left-hand member from    to  , we have: 

      ∫
  

 

 

 
  ∫   

 

 
 or   

 

 
     

whence    ∫
  

 

 

 
  ∫   

 

 
  or   

 

 
       (1.5.3) 

It follows from Eq.(1.5.3) that the required force   depends only on the coefficient of 

friction f and the angle    It does not depend on the radius of the shaft. If there is no 

friction       Of great practical importance is the fact that by increasing angle   

(wrapping the string around the shaft) it is possible substantially to reduce the force   

required to balance force   .Eq. (1.5.3) also gives the relation between the tensions in 

the driving part and the driven part of a belt uniformly rotating a pulley without 

slippage. 

 

1.5.4. Rolling Friction and Pivot Friction 
 

Rolling friction is defined as the resistance offered by a surface to a body rolling on it. 

Consider a roller of radius   and weight   resting on a rough plane (Fig.1.5.4a). If we 

apply to the axle of the roller a force 

    , there will be developed at   a 

frictional force   equal in magnitude to 

   which prevents the roller from 

slipping on the surface. If the normal 

reaction   is also assumed to be 

applied at  , it will balance force  , 

with forces   and   making a couple 

which turns the roller. If these 

assumptions were correct, we could 

expect roller to move, howsoever small the force  . 

Experience tells us, however, that this is not the case; for, due to deformation, the 

bodies contact over a certain surface    (Fig.1.5.4b). When force   acts, the 

pressure at   decreases and at   increases. As a result, the reaction   is shifted in the 

direction of the action of force  . As,   increases, this displacement grows till it 

reaches a certain limit  .  

Thus, in the position of impending motion acting on the roller will be a couple  (   ) 

with a moment      balanced by a couple (   ) of moment   . As the moments 

are equal, we have        or 

                                                               
 

 
                                                   (1.5.4) 

As long as     , the roller remains at rest; when      it starts to roll. The linear 

quantity   in Eq. (1.5.4) is called the coefficient of rolling friction, and is generally 

measured in centimeters. The value of   depends on the material of the bodies and is 



determined experimentally. 

Consider a sphere at rest on a horizontal plane. If a horizontal couple with a moment 

  is applied to the sphere it will be tend to rotate it about its vertical axis. We know 

from experience that the sphere will start turning only when   exceeds some specific 

value    which is determined by the formula 

       
where   is the normal pressure of the sphere on the surface. This result is explained 

by the development of so-called pivot friction, i.e., resistance to rotation to the 

friction of the sphere on the surface. The factor   is a linear quantity called the 

coefficient of pivot friction. 

 

1.5.5. Illustrative problems 

 

 Problem 1. A load of weight         rests on a horizontal surface 

(Fig.1.5.5). Determine, the force   that should be 

applied at an angle       to the horizontal to move 

the load from its place, if the coefficient of static 

friction for the surfaces of contact is       . 

Solution. According to the conditions of the problem 

we have to consider the position of impending motion 

of the load. In this position acting on it are forces 

      and   . Writing the equilibrium equations in 

terms of the projections on the coordinate axes, we 

obtain: 

                              

From the second equation          , whence: 

         (       )  
Substituting this value of Fl in the first equation, we obtain finally: 

  
   

           
       

Problem 2. Determine the angle   to the horizontal at which the load on the inclined 

plane in Fig.1.5.6 remains in equilibrium if the 

coefficient of friction is f0. 

Solution. The problem requires that all possible 

positions for the equilibrium of the load be determined. 

For this, let us first establish the position of impending 

motion at which     . In that position acting on the 

load are its weight  , the normal reaction   and the 

limiting friction     Constructing a closed triangle with 

these forces, we find that            But, on the 

other hand,         Consequently, 

               



In this equation    decreases as   decreases. We conclude, therefore, that equilibrium 

is also possible at     . Finally, all the values of   at which the load remains in 

equilibrium are determined by the inequality 

          
If there is no friction (    ), equilibrium is possible only at    .  

 Problem 3. A bent bar whose members are at right angles is constrained at   

and   as shown in Fig.1.5.7. The vertical distance between   and   is  . Neglecting 

the weight of the bar, determine the thickness   at 

which the bar with a load lying on its horizontal 

member will remain in equilibrium regardless of the 

location of the load. The coefficient of static friction of 

the bar on the constraints is   . 

Solution. Let us denote the weight of the load by   and 

its distance from the vertical member of the bar by  . 
Now consider the position of impending slip of the bar, 

when       In this position acting on it are force 

        , and   , where   and    are the forces of 

limiting friction. Writing the equilibrium equations and 

taking the moments about  , we obtain: 

                                       
where       and        . From the first two equations we find: 

                  
Substituting these values in the third equation and eliminating  , we have: 

               
whence 

   
 

  
     

If in this equation we reduce    the right-hand side will tend to infinity. Hence, 

equilibrium is possible at any value of     . The maximum value of    is at    . 

Thus, the bar will remain in equilibrium wherever the load is placed (at    ) if the 

inequality 

  
 

  
 

is satisfied. The less the friction the grater must   be, If there is no friction (    ) 

equilibrium is obviously impossible, as      
Problem 4. Neglecting the weight of the ladder    in Fig.1.5.8, determine the values 

of angle   at which a man can climb to the top of the ladder at   if the angle of 

friction for the contacts at the floor and the wall is   . 

Solution. Let us examine the position of impending slip of the ladder by graphical 

method. For impending motion the forces acting on the ladder are the reactions of the 

floor and wall    and    which are inclined at the angle of friction    to the normals 

to the surfaces. The action lines of the reaction intersect at  . Thus, for the system to 

be in equilibrium the third force   (the weight of the man) acting on the ladder must 

also pass through  . Hence, in the position shown in the diagram the man cannot 



climb higher than  . For him to reach   the action lines of   and    must intersect 

somewhere along   , which is possible only if force    is 

directed along   , i.e., when     . 

Thus a man can climb to the top of a ladder only if its angle 

with the wall does not exceed the angle of friction with the 

floor. The friction on the wall is irrelevant, i.e., the wall may 

be smooth. 

Problem. 5 A force   is applied to the lever    of the band-

brake in Fig.1.5.9. Determine the frictional torque    

exerted on the drum of radius  , if       and the 

coefficient of friction of the band on the drum is         

Solution. Acting on the drum and band    

wrapped around it is a force P (evidently 

    ) applied at   and a force   applied at 

 . We also have        and   
 

 
       

radians. Hence, 

      
 
 
          

The required torque is 

   (   )           
The less the value of   i.e. the grater the 

coefficient of friction   and the angle  , the 

greater the torque. 

Problem. 6 Determine the values of angle   at which a cylinder of radius   will 

remain at rest on an inclined plane if the coefficient of 

rolling friction is   (Fig.1.5.10). 

Solution. Consider the position of impending motion, when 

    . Resolving force   into rectangular components 

  and     we find that the moving force       
      , and the normal reaction            . We 

have: 

       
 

 
        

or 

      
 

 
  

If   tends to zero the value of    also tends to zero. We conclude from this that 

equilibrium is maintained at any angle     .  

 

 

 

 

 

 



1.6. FORCE SYSTEM IN SPACE 

 

 

1.6.1. Vector Expression of the Moment of a Force about a Centre 
 

The moment of a force about a centre as a measure of the tendency of that force to 

turn a body is characterized by the following three elements: 

1) magnitude of the moment, which is equal to the 

product of the force and the moment arm; 2) the 

plane of rotation     through the line of action of 

the force and the centre (Fig.1.6.1); and 3) the 

sense of the rotation in that plane.  

When all the given forces and the centre   are 

coplanar there is no need specify the plane of 

rotation, and the moment can be defined as a scalar 

algebraic quantity. If, however, the given forces 

are not coplanar, the planes of rotation have 

different aspects for different forces and have to be 

specified additionally. The position of a plane in space can be specified by vector 

normal to it. If, furthermore, the modulus of this vector is taken as representing the 

magnitude of the force moment, and the direction of the vector is made to denote the 

sense of rotation, such a vector completely specifies the three elements which 

characterize the moment of a force with respect to a given centre. 

Thus, in general case we shall denote the moment   ( ) of a force   about a centre 

  by a vector    applied at  , equal in magnitude to the product of the force   and 

the moment arm  , and normal to the plane     trough   and    We shall direct 

vector    so that the rotation viewed from the arrowhead is observed as 

counterclockwise . 

Let's consider expression of moment of a force in terms of a vector product. From the 

definition, 
|   |      areas of         

as vector    is equal in magnitude to twice the area of triangle    . Vector (   ) 

is perpendicular to plane     in the direction from which a counterclockwise rotation 

would be seen to carry   into   through the smaller angle between them, i.e., it is in 

the same direction as vector   . Hence, vectors (   )  and    are equal in 

magnitude and direction. Therefore, 

                                               (   )                                             (1.6.1) 

Thus, the moment of a force about a centre is equal to the vector product of the radius 

vector from the centre to the point of application of the force, and the force itself. 

Formula (1.6.1) can be used to compute the moment    analytically. Suppose the 

projections      ,    of force   on the axes and the       coordinates of its point of 

application   are known. Then, as          , and     , from the well-known 

formula we have 

Fig.1.6.1 



        |

   
   
      

|      (1.6.2) 

where     and   are the unit vectors on the coordinate axes. If the determinant in the 

right-hand part of the equation is expanded according to the first row, the factors of 

     and   will be equal to the projection       and    of vector    on the 

coordinate axes as               . Consequently, 

                                         (1.6.3) 

Using Eqs. (1.6.3) we can determine the vector    from the following formula: 

  √  
    

    
        (1.6.4) 

 

1.6.2. Moment of a Force With Respect to an Axis 

 

Introduce the concept of moment of a force about an axis. The moment of a force 

about an axis is the measure of the tendency of the force to produce rotation about 

that axis. Consider a body free to rotate about an axis   (Fig.1.6.2). 

Let a force  applied at   be acting on body and a plane    be passing through point 

  normal to the axis  . We can resolve the force   into rectangular components    

parallel to the   axis and     in the plane   . Obviously, force   , being parallel to 

axis  , cannot turn the body about that axis. Thus, we find that the total tendency of 

force   to rotate the body is the same as that of its component    . We conclude, 

then, that 

  ( )    (   )  

where   ( ) is a moment of force   with respect to axis  . But the rotational effect of 

force     is the product of the magnitude of this force and its distance   from the axis. 

On the other hand the moment of force      with respect to point  , where the axis 

pierces the plane    , is the same. Hence, 

  ( )    (   )    (   )           (1.6.5) 

Thus, the moment of a force about an axis is an algebraic quantity equal to the 

moment of the projection of that force on a plane normal to the axis with respect to 

the point of intersection of the axis and the plane. 

We shall call a moment positive if the rotation induced by a force     is seen as 



Fig.1.6.3 

counterclockwise when viewed from the positive end of the axis, and negative if it is 

seen as clockwise. 

In order to determine the moment of a force about axis   (Fig.1.6.2) we have to: 

1) pass an arbitrary plane    normal to the axis; 

2) project force   on the plane and compute the magnitude of    ; 

3) erect a perpendicular from point  , where the plane and axis intersect, to 

the action line of     and determine its length  ; 

4) compute the product     ; 

5) determine the sense of the moment. 

The following special cases should be borne in mind: 

1) if a force is parallel to an axis, its moment about that axis is zero (since      ); 

2) if the line of action of a force intersects with the axis, its moment with respect to 

that axis is zero (since    ); 

Combining the two cases, we conclude that the moment of a force with respect to an 

axis is zero if the force and the axis are coplanar. 

 

1.6.3. Relation between the Moments of a Force about a Centre and Axis 

 

Consider a rectangular coordinate system with an arbitrary origin   and a force   

applied at a point   whose coordinate are       

(Fig.1.6.3). Let us determine analytically the 

moment of force   with respect to axis  . For this 

we project force   on the plane    and resolve 

the projection into rectangular components    

and   . But, from the definition, 

  ( )    (   )    (  )    (  )  which 

also follows Varignon's theorem. Also from the 

Fig.1.6.3 

  (  )        and   ( )         

Hence,   ( )            

We can obtain the moments about the other two axes in the same way, and finally, 
  ( )          

  ( )          

  ( )         

}  

These equations give the analytical expression of the moments of a force about the 

axes of a Cartesian coordinate system. 

Thus we can conclude that the moment of a force with respect to an axis is equal to 

the projection on that axis of the vector denoting the moment of that force with 

respect to any point on the given axis. 

 

1.6.4. Composition of Couples in Space. Conditions of Equilibrium of Couples 
 

The action of a couple on a body is characterized by the magnitude of the couple's 



moment, the aspect of the plane of action, and the sense of rotation in that plane. In 

considering couples in space all three characteristics must be specified in order to 

define any couple. This can be done if, by analogy with the moment of a force, the 

moment of a couple is denoted by a vector whose modulus is equal to the magnitude 

of the couple's moment, normal to the plane of action in the direction from which the 

rotation would be observed as counterclockwise (Fig.1.6.4). 

Since a couple may be located anywhere in its plane of action or in a parallel plane, it 

follows that vector   can be attached to any point of the body. Such vector is called a 

free one. 

 

 

 

 

 

 

 

 

 

It is evident that vector   does, in fact, define the given couple as, if we know  , by 

passing an arbitrary plane normal to   , we obtain the plane of action of the couple; 

by measuring the length of   we obtain the magnitude of the couple moment; and 

the direction of   shows the sense of rotation of the couple. 

Since a moment of couple in space is a vector value, couples in space are compounded 

according to the following theorem: any system of couples acting on a rigid body is 

equivalent to a single couple with a moment equal to the geometrical sum of the 

moments of the component couples: 

  ∑          (1.6.6) 

Vector   can be determined as the closing side of a polygon constructed with the 

component vectors as its sides. 

If the component vectors are non-coplanar, the problem is best solved by the 

analytical method. From the theorem of the projection of a vector sum on an axis, and 

from Eq.(1.6.6), we obtain: 

                  ∑             ∑              ∑         (1.6.7) 

With these projections we can construct vector  . Its magnitude is given by the 

expression: 

  √  
    

    
   

Any system of couples can be reduced to single couple with a moment determined by 

Eq.(1.6.6), but for equilibrium we must have    , or ∑      . 

The analytical conditions of equilibrium can be found if we take into account that 

    only if           and     . This, by virtue of Eqs.(1.6.7), is 

possible if 

∑   

 

       ∑            ∑   

  

    

Fig.1.6.4 



 

1.6.5. Reduction of a Force System in Space to a Given Centre 

 

The problem of reducing an arbitrary force system to a given centre is 

based on the theorem of the translation of a force to a parallel position. In order to 

transfer a force   acting on a rigid body from a point   to a point   (Fig.1.6.5a.), we 

apply at   forces      and    
  . Force      will be applied at   

together with the couple (    ) with a 

moment  , which can also be shown 

as in Fig.1.6.5b. 

We have:     ( )  
Consider now a rigid body on which an 

arbitrary system of forces 

           is acting  (Fig.1.6.6a.). 

Take any point   as the centre of 

reduction and transfer all the forces 

of the system to it, adding the 

corresponding couples. We have 

then acting on the body a system of 

forces 

     
          

            
  

    (1.6.8) 

applied at   and a system of couples 

whose moments are: 

     (  )          (  )              (  )     

The forces applied at   can be replaced by a single force   applied at the same point. 

This force is   ∑   
 

 , or, by Eq. (1.6.8), 

  ∑             (1.6.9) 

We can compound all the obtained couples by geometrically adding the vectors of 

their moments. The system of couples will be replaced by a couple of moment 

   ∑    , or 

   ∑   (  )        (1.6.10) 

The geometrical sum of all the forces is called the principal vector of the system. The 

geometrical sum of the moments of all the forces with respect to a given centre is 

called the principal moment of the system with respect to this centre. 

Hence, we have proved the following theorem: any system of forces can be reduced 

to an arbitrary centre and replaced by a single force, equal to the principal vector of 

the system applied at the centre of reduction, and a couple with a moment, equal to 

the principal moment of the system with respect to this centre (Fig.1.6.6b). 

Vector   and    are usually determined analytically, i.e., according to their 

projections on the coordinate axes: 

                           ∑             ∑             ∑         (1.6.11) 

        ∑   (  )         ∑   (  )         ∑    (  )   (1.6.12) 



It follows from the theorem that two systems of forces, for which   and    are the 

same, are statically equivalent. Hence, to define a force system it is sufficient to 

define its principal vector and its principal moment with respect to a given centre. 

 

1.6.6. Conditions of Equilibrium of a Force System in Space 

 

Reasoning as in section 1.4.3, we come to the conclusion that the necessary and 

sufficient conditions for the given system of forces to be in equilibrium are that 

    and       But vectors   and    can be zero only if all their projections on 

the coordinate axes are zero, i.e., when            and           , 

or, by Eqs.(1.6.11) and (1.6.12), when the acting forces satisfy the conditions: 

∑   

 

       ∑   

 

       ∑      

 

 

∑    (  )        ∑   (  )        ∑    (  )      (1.6.13) 

Thus, the necessary and sufficient conditions for the equilibrium of any force system 

in space are that the sums of the projections of all the forces on each of three 

coordinate axes and the sums of the moments of all the forces about those axes must 

separately vanish. 

The first three of the equations express the conditions necessary for the body to have 

no translational motion parallel to the coordinate axes. The latter three equations 

express the conditions of no rotation about the axes.  

If all the forces acting on a body are parallel, the 

coordinate axes can be chosen so that the axis   is 

parallel to the forces (Fig.1.6.7). Then the   and   

projections of all the forces will be zero, their 

moments about axis   will be zero, and the Eqs. 

(1.6.13) will be reduced to three conditions of 

equilibrium: 

∑   

 

      ∑  

 

(  )       ∑  

 

(  )     

The other equations will turn into identities    . 

Hence, the necessary and sufficient conditions for the equilibrium of a system of 

parallel forces in space are that the sum of the projections of all the forces on the 

coordinate axis parallel to the forces and the sums of the moments of all the forces 

about the other two coordinate axes must separately vanish. 
 

\ 

 

1.6.7. Illustrative problems 

 

Problem 1. Acting on a rigid body are 

two couples in mutually perpendicular 

planes (Fig.1.6.8). The moment of each 

Fig.1.6.7 



is 30 N-m. Determine the resultant couple. 

Solution. Denote the moments of the two couples by vectors    and    applied at an 

arbitrary point  ; the moment of the resultant couples is denoted by vector  . The 

resultant couple is located in plane      normal to   and the magnitude of the 

resultant moment is   √  N-m. 

If the sense of rotation of one of given couples is reversed, the resultant couple will 

occupy a plane normal to     . 

Problem. 2 The cube in Fig.1.6.9 hangs from two vertical rods     and     so that 

its diagonal    is horizontal. Applied to the cube 

are couples (    ) and (    ). Neglecting the 

weight of the cube, determine the relation between 

forces   and   at which it will be in equilibrium 

and the reactions of the rods. 

Solution. The system of couples (    ) and (    ) 

is equivalent to a couple and can be balanced only 

by a couple. Hence, the required reactions   and    

must form a couple. Let us denote its moment   

normal to diagonal    as shown in the diagram. In 

scalar magnitude     √ , where   is the length 

of the edge of the cube. Denote the moments of the 

given couples by the symbols    and   : their 

scalar magnitudes are       and       and 

their directions are as shown. 

Now draw a coordinate system and write the equilibrium equations 

     ∑                       

∑                  

The third condition is satisfied similarly. 

It follows from the obtained equations that we must have      , i.e.,    . We 

find, further, that 

  
  

      
   √    √   

But     √ , hence    . 

Thus, equilibrium is possible when    . The reactions of the rods are equal to   in 

magnitude and are directed as shown. 

Problem. 3 Determine the stresses in section     of a beam subjected to forces as 

shown in Fig.1.6.10a. 

Force   goes through the 

centre of the right-hand 

portion of the beam; force 

  lies in the plane    ; 

force   is parallel to the 

  axis. 



Solution. Reduce all the forces to the centre   of the section, and place the origin of 

the coordinate system there. To determine the principal vector and principal moment 

of the system, we have: 

 

                 
                     

                     
 

 
          

 

 
   

Thus, acting on the section     are two lateral forces    and   , an axial tension   , 

and three couples of moments   ,   , and    (Fig.1.6.10b): the first two tend to 

bend the beam about axes    and    and the last tends to twist it about axis   . 

 Problem. 4 Three workers lift a 

homogeneous rectangular plate whose 

dimensions are   by   (Fig.1.6.11). If one 

worker is at  , determine the points   and   

where the other workers should stand so that 

they would all exert the same force. 

Solution. The plate is a free body acted upon 

by four parallel forces   ,   ,    and  , 

where   is the weight of the plate. Assuming 

that the plate is horizontal and drawing the 

coordinate axes as shown in the figure, we 

obtain from the equilibrium conditions: 

         
 

 
    

          
 

 
    

            
According to the conditions of the problem,         , hence, from the last 

equation,     P. Substituting this expression in the first two equations and 

eliminating  , we have: 

    
 

 
               

 

 
    

 

 
        

 

 
  

Problem. 5 A horizontal shaft supported in bearings   and   as shown has attached at 

right angles to it a pulley of radius 

       m and a drum of radius 

        m (Fig.1.6.12). The shaft is 

driven by a belt passing over the pulley; 

attached to a cable wound on the drum is 

a load of weight          which is 

lifted with uniform motion when the 

shaft turns. Neglecting the weight of the 

construction, determine the reactions of 

the bearings and the tension    in the 



driving portion of the belt, if it is known that, it is double the tension    in the driven 

portion and if                  and        
 Solution. As the shaft rotates uniformly, the forces acting on it are in 

equilibrium and the equations of equilibrium can be applied. Drawing the coordinate 

axes as shown and regarding the shaft as a free body, denote the forces acting on it: 

the tension   of the cable, which is equal to   in magnitude, the tensions    and 

   in the belt, and the reactions   ,   ,   , and    of the bearings (each of the 

reactions    and    can have any direction in planes normal to the   axis and they 

are therefore denoted by their rectangular components). 

From the equilibrium equations, and noting that     , we obtain: 

                     
                
                  

       (   )      
               (   )      

Remembering that       , we find immediately from the third and fourth 

equations that 

   
   

  
         

   
  

   
            

From the fifth equation we obtain 

   
           

   
        

Substituting these values in other equations we find: 

                          
                   

and finally, 

                                                    
Problem 6. A rectangular plate of weight         making an angle       with 

vertical is supported by a journal bearing 

at   and a step bearing at   

(Fig.1.6.13a). The plate is kept in 

equilibrium by the action of a string   ; 

acting on the plate is a load         

suspended from a string passing over 

pulley   and attached at   so that    is 

parallel to   . Determine the tension in 

string    and the reactions of the 

bearings   and  , if      ,    
          and           



Solution. Consider the equilibrium of the plate as a free body. Draw the coordinate 

axes with the origin at   (in which case force   intersects with the   and   axes, 

which simplifies the moment equations) and the acting forces and the reactions of the 

constraints as shown (the dashed vector   belongs to a different problem). For the 

equilibrium equations, calculate the projections and moments of all the forces; for 

this we introduce angle   and denote       . Computation of some of the 

moments is explained in the auxiliary 

diagrams (Figs1.6.13b and c). Fig.1.6.13b 

shows the projection on plane     from the 

positive end of the   axis. This diagram is 

useful in computing the moments of forces 

  and   about the   axis. It can be seen 

from the diagram that the projections of 

these forces on the    plane are equal to the 

forces, and that the moment arm of force   

with respect to point   is        
 

 
    ; the moment arm of force   with 

respect to point   is             . 

Fig.1.6.13c shows the projection on plane     from the positive end of the   axis. 

This diagram together with Fig.1.6.13b, helps to compute the moments of forces   

and    about the   axis. It can be seen that the projections of these forces on the    

plane are equal to the forces themselves and that the moment arm of force   with 

respect to point   is   ⁄    
 

 
; the arm of force    with respect to   is    , i.e., 

      , or      , as is evident from Fig.1.13b. 

Writing the equilibrium equations and assuming      we obtain: 

             
                     

                       

  
 

 
                    

  
 

 
                    

                   

Taking into account that   
 

 
      we find that 

                     
    

     
        

   
 

 
 

  

 
                    

  

 
           

                                           
and finally, 

                                  
                                  



Problem 7. Solve problem 7 for case when the plate is additionally subjected to a 

couple of moment           acting in the plane of the plate; the sense of 

rotation (viewed from the top of the plate) is counterclockwise. 

Solution. Add to the forces in Fig.1.6.13a the moment vector   of the couple applied 

at any point perpendicular to the plate, e.g., point  . Its projections are:    
             and           Applying the equilibrium equations, we find 

that the first and second equations remain the same as for problem 6 while the last 

two equations will be: 

  
 

 
                            

                                         
Solving equations, we obtain results similar to those in problem 6, the only difference 

being that in all the equations    will be replaced by     . The answer is: 

                                                
                       

Problem 8. A horizontal rod    is attached to a wall by a ball-and-socket joint and is 

kept perpendicular 

to the wall by wires 

   and    as 

shown in 

Fig.1.6.14a. 

Hanging from end 

  is a load of 

weight        . 

Determine the 

reaction of the ball-

and-socket joint 

and the tensions in the wires if           ,               ,    
 

 
                . Neglect the weight of the rod. 

Solution. Consider the equilibrium of the rod as a free body. Acting on it are force   

and reactions   ,      ,     and   . Draw the coordinate axes and calculate the 

projections and moments of all the forces. As all forces pass through the   axis, their 

moments with respect to it are zero. To compute the moments of force    with 

respect to the coordinate axes, resolve it into components    and     

(                   ). We have   (  )    (  ), as   (  )   , and 

  (  )    (  ), as   (  )   . The computation of the moments of the forces 

with respect to the   axis is explained in the auxiliary Fig.1.6.14b showing the 

projection on plane    .  

Substituting the values of    and    we obtain the following equations: 

                                    
                                   
                                                  
                                                      



   

 

 
                                 

solving which we find that                                     
       and            Components    and    thus actually act in the opposite 

direction than that shown in the diagram. 

Problem 9. An equilateral triangular plate with sides of length   is supported in a 

horizontal plane by six bars as shown in Fig.1.6.15. Each inclined bar makes an angle 

of       with the horizontal. Acting on the 

plate is a couple of moment  . Neglecting 

the weight of the plate, determine the stresses 

produced in the bars. 

Solution. Regarding the plate as a free body, 

draw, as shown in the figure, the vector of 

moment   of the couple and the reactions of 

the bars           . Direct the reactions as 

if all the bars were in tension (i.e., we assume 

that the plate is being wrenched off the bars). 

As the body is in equilibrium, the sums of the 

moments of all the forces and couples acting 

on it with respect to any axis must be zero. 

Drawing axis   along bar 1 and writing the 

equations of the moment with respect to that 

axis, we obtain, as      , 
(      )       

where   
 √ 

 
 is the altitude of the triangle. From this we find: 

    
 √ 

 

 

     
  

Writing the equations of the moments with respect to the axes along bars 2 and 3, we 

obtain similar results for forces    and   . 

Now write the equations of the moments about axis  , which is directed alongside    

of the triangle. Taking into account that     , we obtain  

    (      )     
whence, as      , we find 

           
 √ 

 

 

 
      

Writing the moment equations with respect to axes    and   , we obtain similar 

results for    and   . 

Finally, for      , we have: 

         
 

 

 

 
              

 

 

 

 
  

The answer shows that the give couple creates tensions in the vertical bars and 

compressions in the inclined ones. 



This solution suggests that it is not always necessary to apply equilibrium equations. 

There are several forms of equilibrium equations for non-coplanar force system, just 

as for coplanar systems. 

In particular, it can be proved that the necessary and sufficient conditions for the 

equilibrium of a force system in space are that the sums of the moments of all the 

forces with respect to each of six axes directed along the edges of any triangular 

pyramid or along the side and base edges of a triangular prism are each zero. 

The latter conditions were applied in solving the above problem. 

 

 

 


